THOMAS T. TIBBITTS AND D. L. D. CASPAR

PRESS, W. H., FLANNERY, B. P, TEUKOLSKY, S. A. & VETTER-
LING, W. T. (1988). Numerical Recipes in C: the Art of Scientific
Computing. Cambridge Univ. Press.

STuBBs, G. J. (1974). Acta Cryst. A30, 639-645.

Acta Cryst. (1993). A49, 545-557

545

TiBBITTS, T. T., CASPAR, D. L. D., PHILLIPS, W. C. & GooOD-
ENOUGH, D. A. (1988). Biophys. J. 53, 634a.

TiBBITTS, T. T., CASPAR, D. L. D., PHILLIPS, W. C. & GoOD-
ENOUGH, D. A. (1990). Biophys. J. 57, 1025-1036.

Frequency Statistical Method for Evaluating Cosine Invariants
of Three-Phase Relationships

By DAviD A. LANGS
Medical Foundation of Buffalo, 73 High Street, Buffalo, NY 14203, USA

(Received 8 June 1992; accepted 26 October 1992)

Abstract

A new variation on the established procedure to
evaluate three-phase structure invariants through
quadrupole relationships is described. This method
difters from earlier algebraic formulations in that the
cosine-invariant estimates are based on a conditional
observed frequency distribution of |E| magnitudes
for the quadrupole, rather than on the values of the
magnitudes themselves. Successful applications of
this method to a number of structures that ranged in
size from 84 to 317 independent non-hydrogen light
atoms are given.

Introduction

The three-phase crystallographic structure invariants
play a central role in the determination of crystal
structures by direct-phasing methods. Tangent-
formula methods for small-molecule determinations
have traditionally relied on the 0 (modulo 27) proba-
bility estimate for these ‘triples’ (Karle & Hauptman,
1956). Efforts to extend these techniques to larger
structures have required more precise estimates to be
obtained for these phase invariants, though use of
algebraic formulae (Karle & Hauptman, 1957
Vaughan, 1958; Hauptman, 1964; Hauptman, Fisher,
Hancock & Norton, 1969; Karle, 1970; Duax, Weeks
& Hauptman, 1972; Hauptman & Duax, 1972), deter-
minantal joint probability distributions (Tsoucaris,
1970; Messager & Tsoucaris, 1972; Giacovazzo, 1976,
1977a; Karle, 1979, 1980) or probabilistic formulae,
as applied to isomorphous-replacement or anoma-
lous-dispersion data (Hauptman, 1982; Giacovazzo,
1983; Fortier, Moore & Frazer, 1985) and to the
extended neighborhoods or phasing shells of data
that define higher-order relationships into which these
triples have been suitably embedded (Hauptman,
1975; Giacovazzo, 1977b; Karle, 1982). This report
describes a new method to estimate three-phase
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invariants based on examination of the frequency
distribution of | E| magnitudes that complete a family
of conditionally constructed quadrupoles that are
common to the evaluated triple.

Background

One of the earliest strategies in direct-methods
research was the development of formulae to evaluate
crystal-structure phase invariants and semi-invariants
as a means to determine crystal structures. This work
was initiated about the same time that the rules for
origin and enantiomorph specification and phase-
extension techniques were being developed. For-
mulae to estimate the single-phase structure
invariants had an immediate application; they pro-
vided a means to reduce the number of algebraic
symbols that had to be permuted and tested for a
selected starting group of phases. But algebraic for-
mulae that were developed for the determination of
the cosine values of the three-phase structure
invariants, for example, for P1 symmetry (Karle &
Hauptman, 1957),

| EnE_x Ex—n| cos (on— @i+ Px—n)
= N"Y2(|Ep)*+|Ey*+ | Ex_nl*—2)
+HINYH(EP = D(E > = D(Ercn? = 1))y, (1)

however, did not have an immediate impact on phas-
ing practices. Firstly, these formulae were computa-
tionally demanding; the average of a product of
|E]*—1 magnitudes had to be computed over a range
of 1 that sampled the whole of reciprocal space and,
to ensure that the whole of reciprocal space was
explored, the diffraction vectors of the triple, h, —k
and k—h, had to be cyclicly permuted within the
framework of the formula. Secondly, numerical tests
indicated that (1) tended to produce unreliable cosine
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estimates as a consequence of the unavoidable over-
lap of vectors in the Patterson function and attempts
were made to modify these calculations to improve
the results.

One variant of (1) that was developed to mitigate
the Patterson-function overlap problem, subsequently
referred to as the TPROD formulation (Hauptman,
Fisher, Hancock & Norton, 1969), was

| EnE_kEx-nl c0s (on— @+ ¢ox-n) = R+ KV, (2)
Ry =4N""[3(| ExEu* + | ExEunl’ + | EnEx-nl)
+| Ey* +|Eul* +| Exnl* =31,
V=((|Ey|'* = )| Eroad* = )| Eral /2 = €)1,

where ¢=(E,|"*), and K is a scale factor that can
be adjusted as a function of the magnitude of
| EpEx Eyx 1l in an effort to fit the calculated distribution
of cosines to the theoretical distribution. The MDKS
formula (Fisher, Hancock & Hauptman, 1970) is an
alternate variant of (1) that utilizes conditional
averages,

| EwE_xEx-n| €0s (¢n— @x+ o) =M(D—-KS), (3)
where
D=(E,l*~1||E\l, |Er-nl = th,
S={(Er-l*~1||Eo| =t
+{| B> = 1| Ey ol = th,

M and K are scaling constants to fit the distribution
of calculated cosine values and ¢ is a conditional
threshold value placed on certain of the E magnitudes
that must be satisfied before the associated terms can
be included in the averages. The exact value chosen
for t is somewhat arbitrary, but good results are
usually obtained when ¢ is in the range 1.0 to 1.5.
These and related algebraic formulae will only
provide reliable cosine estimates for triples whose A
values (A=2|E,E_yEx_l/N"?, where N is the
effective number of equal atoms in the primitive unit
cell) exceed some limit, say 0.5 for ), triples, 1.5 for
zonal phase-restricted Y, triples and 2.5 for unrestric-
ted Y, triples composed of non-centrosymmetric
phases. Below these thresholds, the estimates tend
not to be reliable. The estimates tend to be more
accurate the larger the A value and the greater the
number of terms that are included in computing the
¥, D and S averages. The sensitivity of the TPROD
and related cosine estimates can often be improved
by the imposition of constraints on particular magni-
tudes (|E,|, |E1-nl, |E1-x) that are used to compute
the averages, for example it may be required that one
or two of these terms exceed some threshold, say 1.5,
or lie in a particular range, say between 1.5 and 2.5
(Karle, 1970; Hauptman, Fisher & Weeks, 1971).
Karle (1970) has further cautioned that one should
adjust these amplitude constraints to determine the
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point at which the cosine estimates become stable
and do not fluctuate unpredictably as a consequence
of variation of the number of quadrupole contributors
to the formulae.

Thus far these algebraic and probabilistic formulae
have been found to be useful for the solution of
problematic structures containing as many as 50 to
80 independent light atoms in the unit cell and efforts
to solve larger structures by these methods have not
been universally successful (Gilmore & Hauptman,
1985; Gilmore, 1991). This work reports a method to
evaluate phase invariants that may improve the relia-
bility of the estimates and extend the usefulness of
these formula beyond 80 atoms’ complexity.

The frequency distribution

A general characteristic of all earlier algebraic for-
mulae is that the cosine estimates were an explicit
function of the values of the |E| magnitudes. Yet it
is commonly known that certain properties of the
structure, e.g. whether or not it is centrosymmetric,
are as readily revealed by the shape of the distribution
of E values as by statistics based on powers of the
| E| magnitudes. For example, although the average
expected | E|” values of centric and non-centric struc-
tures are both equal to 1.0 and cannot be used to
distinguish whether a center exists, the percentages
of E values that fall into certain |E|-magnitude
ranges, e.g. those that are less than 0.1 or exceed a
value of 1.0, 2.0 or 3.0, can often indicate the correct
choice (Howells, Phillips & Rogers, 1950). In this
regard, the information given by the relative fraction
of the number of E values in the tails of the distribu-
tion curve (an intensive property) is more sensitive
to whether the structure is centric or acentric than
the average |E|> (an extensive property) computed
from all the data. It will be shown in the following
paragraphs how the information present in the high
| E|-magnitude tail of the frequency-distribution curve
can be used to provide an alternate qualitative
measure of the conditional expectation values
(|E\_W*~1]||Ey,..., =1t),, as they appear in the D
and S terms of the MDKS formula.

When the computed value of (|E,_,J*—
1||E|y,..., =1t), is greater than that given by the
unrestricted average, (| E;|° — 1), provided by the nor-
mal distribution of the full set of |E| values, the
distribution of | E| values must be perturbed to include
a higher percentage of large values in the conditional
average and vice versa.

The actual nature of these perturbations, however,
appears to be intermediate between two extremes:
the distribution may be (a) uniformly perturbed, i.e.
retain the shape of the normal distribution of |E]|
values but either be shifted toward larger or smaller
magnitudes, or (b) exhibit a non-uniform or skew
perturbation such that the population of |E| values



DAVID A. LANGS

in the tails of the distribution may experience the
greatest changes. In either case, the fraction of |E|
values in the tails of the distribution will be affected,
but more so in case (b) than in case (a).

It also follows that, on occasion, triples that have
similar computed values for their conditional
averages, {|E,_i[°’—1||El;, ..., =t),, may have dis-
parate frequency distributions. Examples of phasing
applications have been selected to demonstrate that
this frequency criterion can be useful for cosine-
invariant evaluation and structure determination for
a number of difficult-to-solve structures. It remains
to be shown to what extent this new procedure may
have mitigated the deleterious effects that Patterson-
function overlap has on the derived cosine estimates.

The »-STAT formulae to evaluate triples

It should be noted that the D term in the MDKS
formula (3) corresponds to the average value of
|E]*~1 for any one of the three magnitudes (|E,|,
|Ei-ils | En-y|) that form a quadrupole with a triple,
on the condition that the two other magnitudes are
large and greater than some threshold ¢,. One of the
conditions for the TPROD and MDKS cosine esti-
mates to be large and positive may be formulated
from the single-variate magnitude distribution of the
unrestricted third term of the doubly conditioned
quadrupole relationship. If two of these three quad-
rupole terms are required to be large, e.g. ¢, =1.75,
the tendency for the D and ¥ terms to be large or
small can be sensed by the perturbation of the normal
frequency distribution of | E| amplitudes of the third
unrestricted term. Thus, if

" =quads(|E,_|= 4, || El, | Enal = 1))
x[quads(|E,_y| = obs.||Ey|, |[Exil=1)]7", (4)

where quads is the number of quadrupoles satisfying
the condition in parentheses and f,=1.75, is larger
than the random experimentally determined
frequency, v(random) = (number of |E| values = t,)/
(total number of | E| values), this may be taken as an
indirect indication that ¢, — ¢, + ¢y =0 (mod 27),
regardless of the statistic computed from all the data
as it may affect the TPROD or MDKS formulae. But
if, by comparison,

v~ =quads(|E,_|=t,||Ey| =1, |En| = 1)
x[quads(|E;_y] = obs.||Ei| = 1y, | Eqil = 1,)]7,
(5)

where t,=1.75 and #,=0.20, is also by chance larger
than v(random), it may be inferred that ¢,— ¢, +
@x-n = (mod 27) since the ¥ term in the TPROD
formula would tend to be maximally negative. Here
|E;—i| = obs. implies that the remaining term of the
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quadrupole has been measured so that the frequency
for which it exceeds the threshold ¢, can be validly
computed. The thresholds ¢, and ¢, are selected so
that the number of |E| magnitudes that are greater
than ¢, is approximately equal to the number of those
less than t,. For non-centric structures, the expected
probability that an |E| magnitude exceeds some
threshold value |E,| is given by »(|E|=|E]) =
exp (—|E,*), which, for the thresholds ¢, =1.75 and
1,=0.22, select ~4.5% of the weakest and strongest
data. For centrosymmetric data, comparable values
are t,=2.00 and 7,=0.11, as determined from the
normal probability distribution. In general, t, and ¢,
should be adjusted to ensure that there are at least
300 quadrupole contributors in the denominators of
(4) and (5) to obtain frequency statistics with reason-
ably small variances. Equations (4) and (5) will be
referred to as the »-STAT formulae and »* and v~
as the cosine-invariant estimators for this procedure.
If there are on average much fewer than 300 quad-
rupole terms in the evaluation of these estimators,
they will not provide reliable cosine indications.

An important observation regarding cosine-
invariant estimates of large structures, whether they
be from TPROD, MDKS or »-STAT methods, is that
in general the strongest positive cosine indications
are correctly indicated but only about 25% of the
strongest negative indications are correct. The source
of this difficulty is fairly easy to understand. Let us
say that in a list of the top 100 triples for some centric
structure we may typically have 90 triples cosines that
are +1.0 and 10 that are —1.0. If only 80% of the
cosine-invariant estimates are decisively correct, we
will have 72 of the 90 positive triples and 8 of the 10
negative triples correctly indicated, but at the cost of
getting 18 of the positive triples and 2 of the negative
triples incorrectly indicated. Thus, by relying on the
most positive cosine estimates, we can significantly
reduce the fraction of aberrant triples from 10%
(10/100) to 2.7% (2/74). However, even though the
negative estimator is capable of correctly identifying
8 of the 10 negative triples, only 31% (8/26) of the
strong negative indications will actually be negative
as there are 18 false indications from positive triples
in this list. Similar observations are seen to hold for
non-centric structures. Thus, it can be very risky to
use negative cosine estimates in an active phasing
role to determine complex crystal structures.

Experience has shown that one of the better phas-
ing strategies to employ under these circumstances is
to use limited symbolic addition involving the
strongest positive indications to produce a large start-
ing set of reflections that can be expressed in terms
of a small number of permuted symbols. The negative
estimates are seldom used actively in this manner,
but may be used to confirm a ), phase assignment
for pairs of Y, triples that indicate opposing signs.
That is, if one of the two Y, estimates is strongly
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indicated to be positive, the other must exhibit a
strong negative estimate to be consistent. Similar con-
structions to unmask and actively utilize aberrant ),
triples’ phase information exist in the form of incon-
sistent quadrupoles (Viterbo & Woolfson, 1973) and
triples (Han & Langs, 1988).

Applications

The v-STAT estimators »* and »~ were computed
for lists of the strongest three-phase structure
invariants for a number of complex test structures.
These structures included ILED, CgH,0;N¢O;s,
P2,2,2,, N =284 (Pletnev, Galitskii, Ivanov, Smith,
Weeks & Duax, 1980); ACE, C¢oH ,02N¢0,5.2C3HO,
P3,, N =92 (Pletnev, Mikhailova, Ivanov, Langs,
Grochulski & Duax, 1991); ENKA, C;,Hg(N4Oz,
P1, N =96 (Smith & Kristenansky, 1991); HEXIL,
C30H|36N8024.14H20, P212121, N= 126 (Pletnev,
Ivanov, Langs, Strong & Duax, 1992) and GRAMA,
C198H280N40034.15C2H50H, P2]2121 N N =317
(Langs, 1988).

A variety of different kinds of three-phase structure
invariants were examined. These included Y, triples,
both general and zonal phase-restricted Y , triples and
a small group of inconsistent ), triples that were
generated for the P3, ACE structure. The minimum
A values chosen for the various kinds of invariants
were generally in the range that was found to be
useful for the TPROD and MDKS estimates, viz 0.25
for ¥, triples, 1.25 for zonal restricted ), triples and
2.5 for unrestricted Y, triples. In most cases, the value
chosen for ¢, was 1.75 and ¢, was adjusted so that the
ratio of weakest to strongest |E| magnitudes was
approximately 1.2:1. The only exception was the
ENKA structure, where ¢, had to be reduced to 1.65
to increase the average number of quadrupole con-
tributors in the demoninators of (4) and (5) toward
the target value of 300 or more.

The results are presented in Tables 1 to 5 for the
five known test structures; the aberrant phase
invariants are indicated by an asterisk (*). Similar to
what had been previously noted for the TPROD and
MDKS estimates, the reliability of the individual
v-STAT estimates were better as the A values of the
triples became larger and, moreover, it appeared that
this reliability could be extended to structures of
greater than 100 atoms’ complexity. Table 6 lists a
group of 33 zonal reflections for the GRAMA struc-
ture that can be abstracted from the phase-invariant
list of Table 5 and expressed in terms of five symbols.
These 33 phases together with 9 additional unrestric-
ted phases, expressed as magic integers, were actually
used to solve this structure (Langs, 1988), which
contains more than 300 independent atoms in the unit
cell. It sould be cautioned that results such as these
are sensitive to the accuracy with which the data have
been measured and scaled, as well as to the degree
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to which the scaled | E| values model the ideal point-
atom structures upon which probabilistic direct
methods have been derived (Langs, 1993).

Discussion of results

The phase-invariant analyses presented in Tables 1
to 5 survey a range of structural determinations of
increasing complexity. The ILED data set represents
a difficult but well behaved problem in that this struc-
ture can be determined from numerous different start-
ing sets by phase extension or by random-phasing
methods (Yao, 1981) and on average requires from
250 to 500 phasing trials to find a solution. The
number of phasing trials, however, can be sig-
nificantly reduced if one can take advantage of the
phase-invariant information from }, and }, relation-
ships in Table 1. Of the 46 largest Y, indications in
Table 1(a), 14 are indicated to be aberrant (*) and
of these 14 triples only one, involving reflection 47,
is observed to have v" = v, as is indicated (}). Of
the 46 zonal restricted ), triples with A values greater
than 1.20 listed in Table 1(b), there are five aberrant
(*) entries and each of these has been detected with
v* being less than v~. How can this information be
effectively used?

For instance, the first ), triple in Table 1(a) is a
strong positive indication (v*=0.072, v~ =0.036)
that the phase of the 166th reflection, 008, is 180°.
There are two contradicting phase indications for
reflection 166 in the table (triples nos. 10 and 46)
and for both of these triples »* < »™, indicating that
the phase indication of 0° is incorrect or aberrant,
thus confirming that the true phase is 180°, as indi-
cated by triple number 1. Inspection of Table 1(a)
readily reveals that reflections 7, 9, 10, 47, 74, 166
and 424 are 0, 7, 0, 0, 7, 7 and 7, respectively. Given
that there are two other strong and conflicting sign
indications for reflection 47 in the table (numbers 30
and 38) and the fact that the seventh ), triple in
Table 1(b) strongly indicates that ¢;— @+ ¢4 =
0 (mod 27), the potential error involving phase 47
can be avoided. After selection of the ten or so
strongest )., cosine indications from Table 1(b), it is
a fairly trivial matter to derive a starting phase set of
20 or more reflections that can be expressed in terms
of only two symbols. In this way, this structure can
be solved in considerably fewer than the 250 to 500
trials required if one does not employ this additional
phasing information.

The D and S terms from the MDKS calculation
and their computed cosine estimate are presented as
the three rightmost columns of Table 1. An inspection
of the table discloses no strong correlation among
the D and S terms and the »* and v~ estimators,
even though both are derived from the same sample
population of quadrupole relationships. Triples can
be observed that have similar computed D or S values
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Table 1. List of triples for the test structure ILED (P2,2,2,, N =84 atoms), ranked on decreasing magnitude
of A

(a) ¥, triples N1, N2 and N3 are the serial numbers of the three phases that define the triple invariant, ® = ¢(N1)+ ¢(N2)+ ¢(N3)+ T,
where ¢(I)=—¢(—1I) and T is a phase shift due to symmetry operations on the constituent reflections to relate them to their standard
parent forms. Of the 46}, triples listed, there are 14 aberrant phase relationships, indicated by * to the right of column T. Only one
of these 14 aberrant triples is noted to have »* = »~ and is indicated by 1. The »-STAT formulae used 276 E values with t, = 1.75, 400
with 1,=<0.30 and »(random) = 0.055. The D and S terms from the MDKS calculation and their computed cosine estimate are appended
for comparison in the three rightmost columns. Although there are numerous entries in this and subsequent tables for which »* < v,
which infers a negative cosine estimate, only a small fraction of these, say 25%, will actually be observed to be negative for reasons
that are stated in the paragraph following equation (5).

H -K K—-H N1 N2 N3 »* v” A T D S cos P,
0 3 4 0o -3 4 0 0 -8 1 -1 -166  0.072 0.036 1.470 T 0.675 0.228 1.10
1 7 30 1 7 =30 -2 -14 0 13 -13 -9 0.019 0.052 1.036 T 0.107 0.181 0.17
1 727 1 7 =27 -2 -14 0 42 -42 -9 0.019 0.058 0.736 0* 0.194 0.132 0.32
1 7 6 1 7 -6 -2 -14 0 57 -57 -9 0.000 0.012 0.655 T 0.019 0.104 0.03
1 726 1 7 =26 -2 -14 0 75 =75 -9 0.070 0.026 0.585 L4 0.510 0.070 0.83
1 7 0 1 7 0 -2 -14 0 92 -92 -9  0.000 0.056 0.538 T -0.417 0.065 —0.68
9 4 3 -9 4 3 0o -8 -6 24 —24 -272  0.019 0.046 0.538 m* —0.044 0.027 -0.07
5 0 6 5 0 6 -10 0 -12 15 -15 —452  0.000 0.037 0.527 0 —0.476 —0.056 -0.78
2 137 2 1 =37 -4 -2 0 49 —~49 —=74  0.041 0.028 0.512 L4 0.305 0.042 0.50
0 2 4 ¢ -2 4 0 0 -8 40 -40 =166  0.039 0.045 0.502 0* 0.377 0.266 0.62
0 6 30 0 6 -30 0 -12 0 23 =23 -424  0.037 0.051 0.493 0* 0.298 0.162 0.49
2 727 2 7 =27 -4 -14 0 118 -118 -10  0.043 0.069 0.475 w* 0.269 0.181 0.44
1 135 1 1 =35 -2 =2 0 72 =72 —47  0.000 0.032 0.467 0 —-0.093 0.041 -0.15
314 2 3 -14 2 -6 0 -4 43 —43 -195 0.023 0.040 0.462 0 0.213 0.087 0.35
113 1 1 -13 1 -2 0 =2 35 =35 —-322  0.056 0.000 0.455 0 0.420 0.149 0.69
1 710 1 7 -10 -2 -14 0 145 —145 =9  0.072 0.035 0.454 T 0.606 0.109 0.99
1 1 0 1 1 0 -2 -2 0 94 -94 -47  0.055 0.032 0.430 T*t 0.332 0.264 0.54
1 7 32 1 7 =32 -2 -14 0 182 -182 -9 0.000 0.055 0.400 T 0.040 0.161 0.07
2 75 1 7 =5 -4 -14 0 165 —~165 =10  0.000 0.043 0.398 a* 0.261 0.070 ~0.43
0 120 0 -1 20 0 0 -40 63 —63 -201  0.000 0.041 0.396 w* 0.431 0.059 -0.70
2 729 2 7 -29 -4 -14 0 197 -197 ~10  0.000 0.045 0.375 ¥ —0.004 0.106 0.00
0 6 31 0 6 -31 0 -12 0 51 =51 —424  0.082 0.076 0.363 k4 0.483 0.084 0.79
4 2 0 4 2 0 -8 -4 0 74 =74 =234 0.029 0.060 0.361 0 0.106 0.023 0.17
4 9 6 4 -9 6 -8 0 -12 150 -150 -44  0.018 0.024 0.357 T —0.046 0.003 —-0.08
2 7126 2 7 =26 -4 -14 0 224 ~224 -10  0.048 0.043 0.352 0 0.441 0.068 0.72
2 7 8 2 7 -8 -4 -14 0 222 -222 -10  0.070 0.052 0.352 0 0.534 0.213 0.87
2 14 10 2 -14 10 -4 0 -20 95 -95 -173  0.000 0.025 0.347 0 -0.219 —-0.013 -0.36
3 611 3 6 -11 -6 -12 0 251 -251 -7 0.050 0.014 0.343 0 0.520 0.069 0.85
9 6 13 -9 6 13 0 -12 -2 136 -136 -108  0.000 0.010 0.331 ™* —-0.157 0.001 -0.26
1 127 1 1 =27 -2 -2 0 176 -176 —47  0.066 0.050 0.324 0 0.554 0.078 0.91
4 216 4 2 -16 -8 -4 0 100 -100 —234  0.000 0.036 0.324 0 —0.146 0.008 -0.24
1 3 4 1 3 -4 -2 -6 0 107 -107 =219 0.076 0.052 0.315 k4 0.505 0.039 0.83
1 7 3 1 7 -3 -2 -14 0 291 —-291 -9  0.027 0.071 0.314 0* —0.004 0.079 0.00
2 728 2 7 =28 -4 -14 0 286 ~286 -10  0.035 0.028 0.309 0 0.316 0.159 0.52
2 7 32 2 7 =32 -4 -14 0 279 =279 -10  0.024 0.040 0.309 0 0.139 0.158 0.23
8 020 -8 0 20 0 0 -40 126 -126 -201  0.000 0.065 0.307 0 —-0.267 0.172 -0.44
5 2 8 -5 2 8 0 -4 -16 210 -210 ~46  0.013 0.042 0.306 T —-0.099 0.007 -0.16
1 117 1 1 -17 -2 =2 0 228 —228 —47  0.050 0.016 0.291 0 0.406 0.115 0.66
9 3 1 -9 3 1 0 -6 -2 101 -101 ~422  0.000 0.070 0.281 0 ~0.304 0.018 ~0.50
315 14 3 -15 14 -6 0 -28 167 ~167 =151 0.000 0.035 0.274 T -0.084  —-0.046 -0.14
114 11 1 -14 11 -2 0 -22 256 —256 =55 0.047 0.017 0.266 T 0.237 0.031 0.39
4 020 -4 0 20 0 0 -40 173 -173 -201 0.038 0.064 0.256 0 0.042 - 0.050 0.07
0 613 0 6 13 0 -12 -26 221 ~221 -108  0.000 0.054 0.255 0 —-0.270 0.000 ~0.44
5 3 8 5 =3 8 -10 0 -16 131 —131 —478  0.000 0.026 0.252 w* -0.137 -0.098 -0.22
3 610 3 6 -—10 -6 -12 0 394 -394 -7 0.032 0.040 0.252 * 0.188 0.079 0.31
6 0 4 -6 0 4 0 0 -8 195 —-195 -166  0.025 0.044 0.251 0* —-0.038 0.019 —-0.06

(b) The top 46 ¥, zonal restricted triples. There are 5 aberrant triples, marked *, that have »*=»". Of the 21 triples that have »*=»",
all are correctly indicated as being reliable.

N2 N3 »* v” A

H -K K-H N1 T D S cos P,
0 7 30 0 7 =27 0 -14 -3 2 16 =17 0.053 0.037 2.782 0 0.348 0.183 091
0 3 4 0 -6 30 0 3 -34 1 =23 79 0.039 0.027 2.361 g 0.323 0.130 0.85
0 3 4 0 -4 16 0 1 -20 1 —46 63 0.038 0.036 2.214 T 0.209 0.152 0.55
0 3 4 0 8 -7 0 —-11 3 1 33 =99  0.042 0.053 2.170 T 0.170 0.066 0.45
0 3 4 0o -7, 27 0 4 =31 1 -16 163 0.031 0.014 2.157 T 0.373 0.166 0.98
0 3 4 0 6 30 0 -9 26 1 23 -158  0.103 0.036 2.120 T 0.810 0.123 2.13
612 0 -4 -14 0 -2 2 0 7 -10 47  0.078 0.029 2.098 0 0.792 0.143 2.08
0 7 30 0 8 -36 0 -15 6 2 50 —-64  0.024 0.000 2.039 T 0.206 0.081 0.54
6 12 0 -2 -14 0 -4 2 0 7 -9 74 0.054 0.028 2.014 0 0.550 0.108 1.45
0 3 4 0 7 -14 0 -10 10 1 11 -367 0.015 0.043 1.912 T 0.038 0.099 0.10
0 7 30 0 2 -4 0 -9 =26 2 40 —158  0.052 0.036 1.865 0 0.553 0.216 1.45
0 3 4 0o -7 14 0 4 -18 1 -11 455  0.018 0.046 1.819 T 0.122 0.109 0.32
0 7 30 0 4 -16 0 =11 -14 2 46 ~-213  0.016 0.006 1.719 0 0.002 0.070 0.00
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Table 1(b) (cont.)

H -K K-H N1 N2
5 0 6 =7 0 16 2 0 -22 15 =21
0 730 0 -8 7 0 1 =37 2 -33
0 727 0 6 -30 0 -13 3 16 23
0 3 4 0 -7 -25 0 4 21 1 -54
0 3 4 0 1 -3 0 -14 -1 1 99
0 3 4 0 3 9 0 -6 -13 1 81
6 0 3 -8 0 19 2 0 -22 18 =31
6 0 1 -4 0 -32 -2 0 31 5 —68
0 3 4 0 13 -3 0 -16 -1 1 52
214 0 -3 =15 0 1 1 0 9 —41
0 727 o -8 -7 0 1 =20 16 -33
0 3 4 0o -2 -22 0 -1 18 1 -80
414 0 -3 -15 0 -1 1 0 10 —41
0 7 30 0 -2 4 0 -5 -34 2 -40
0 7 30 0o -3 -9 0 -4 -21 2 —-81
0 525 0 7 -32 0 -12 7 20 27
0 3 4 0 2 27 0 -5 =31 1 153
0 525 0o -2 4 0 -3 -29 20 -40
0 3 4 0 5 -10 0 -8 6 1 164
014 3 0 -2 4 o -12 -7 17 -40
4 037 -5 0 =35 1 0 -2 8 -14
0 7 14 0 -2 -4 0 -5 -10 11 -40
5 0 6 -7 0 -16 2 0 10 15 =21
0 3 4 0 -1 =37 0 -2 33 1 —285
0 3 4 0o -9 -2 0 6 -2 1 -199
0 416 0 -7 =25 0 3 9 46 -54
0 7 27 0 -2 4 0 -5 =31 16 -40
2 20 -2 0 -22 0 -2 22 47 -55
6 0 1 -8 0 9 2 0 -10 5 -132
6 0 1 2 0 -22 -8 0 21 5 55
6 0 1 -10 0 -10 4 0 9 5 =172
0 7 30 0 -8 -12 0 1 -18 2 —255
0 7 14 0 -4 -16 0 -3 2 11 -46

for their conditional averages but have dissimilar »*
or v~ values computed from the distribution of the
same | E| magnitudes. No other comparisons are made
here between the v»-STAT formulae and similar
cosine-invariant estimation procedures for triples
other than to say that there do not appear to have
been any successful ab initio applications to any
structure containing more than 80 non-hydrogen light
atoms by any of the earlier methods. Of the five
structural examples cited in this paper, all contain
more than 80 atoms and, apart from the ILED
example, each required the »-STAT analysis to facili-
tate the structure-determination process.

The remaining four structural examples represent
problems that cannot easily be determined by stan-
dard direct-phasing procedures. The 92-atom P3,
structure of ACE, for example, will not readily yield
to phase-permutation methods and, although a solu-
tion can be found by random-phasing methods,
thousands of trials are generally required. Table 2
provides an answer as to why this particular structure
is so troublesome. Of the thousands of triples used
to solve this structure, a small percentage are incon-
sistent (Han & Langs, 1988). The two strongest Y.,
triple indications for this structure, with A values of
3.31, represent an inconsistent pair (see Table 2).
Reflection numbers 1, 10 and 11 can form two non-
identical triples, one for which ¢, + ¢, + ¢, +120°is
assumed to equal zero (mod 2#) and the other for
which @+ @0+ ¢y, +240° is assumed to be zero.

N3 »* v A T D S cos P,
=55 0.018 0.015 1.718 T -0.032 -0.033 -0.08
285  0.031 0.049 1.709 ™ 0.152 0.128 0.40
=52 0.043 0.027 1.706 0 0.359 0.173 094
296  0.046 0.024 1.673 0 0.334 0.091 0.88
-181  0.005 0.020 1.652 0 —0.068 0.070 —0.18
-221  0.021 0.038 1.645 0 0.179 0.104 0.47
-55 0.000 0.025 1.635 0 —0.096 0.009 -0.25
73 0.009 0.027 1.610 ™ 0.072 0.034 0.19
—-358 0.015 0.035 1.596 0 0.073 0.138 0.19
94 0.054 0.052 1.584 0 0.581 0.188 1.53
63  0.042 0.051 1.579 T 0.266 0.112 0.70
-139  0.016 0.032 1.544 * 0.153 0.134 0.40
94 0.089 0.045 1.530 T 0.896 0.232 2.36
—481 0.036 0.048 1.488 0 0.537 0.250 141
-296 0.014 0.041 1.472 0 —0.094 0.049 -0.25
-120 0.038 0.024 1.461 0 0.352 0.087 0.93
—-257 0.025 0.029 1.458 o* 0.015 0.072 0.04
-88  0.032 0.025 1.449 0 0.240 0.136 0.63
-272  0.050 0.027 1412 T 0.486 0.115 1.28
-120 0.024 0.057 1.398 0 0.153 0.149 0.40
-392 0.018 0.029 1.393 T 0.120 0.185 0.32
-164 0.014 0.044 1.380 0 0.172 0.194 0.45
230 0.017 0.033 1.371 0 -0.105  -0.062 —0.28
-320 0.015 0.019 1.249 T -0.077 0.059 —0.20
422 0.017 0.031 1.242 0 0.070 0.100 0.18
81 0.045 0.057 1.241 o* 0.117 0.076 0.31
=257 0.044 0.031 1.240 0 0.494 0.197 1.30
—-80 0.040 0.025 1.236 0 0.281 0.047 0.74
-230 0.000 0.032 1.234 0 -0.239 —0.018 —0.63
423 0.061 0.045 1.222 T 0.515 0.032 1.35
178  0.000 0.018 1.205 0 —-0.042 —0.076 =0.11
319 0.029 0.047 1.203 T 0.145 0.074 0.38
=299  0.029 0.033 1.202 T 0.276 0.087 0.73

Clearly, it is impossible for both of these triples to
be satisfied. In fact, from the solved structure it is
known that the first invariant (cos @ =0.84) sums to
32°, while the second (cos @ = —0.88) sums to 152°.
If one does nothing to these data, the two indications
will average and a 92° phase error will be propagated
at the onset of the phase determination. The »-STAT
cosine estimates, however, correctly indicate that the
first triple is the more reliable of the two and with
the second triple discarded the phase error may be
reduced to 32° Thus, by employment of a trivial
amount of phase-invariant editing, the structure can
be solved in a manageable number of trials.

The third example to be discussed is the P1 struc-
ture of ENKA. The problem with this structure is
that, if a basis set is selected from among the strongest
E values, the phases rapidly refine to over-consistency
to produce ‘U-atom’ solutions. Four different phase-
permutation trials, each exploring 8190 phase sets,
all failed to produce a single solution as all NQEST
figures of merit (De Titta, Edmonds, Langs & Haupt-
man, 1975) turned positive and most approached a
value of +1.0 within three or four refinement cycles.
Random-phasing methods experienced the same fate,
even when special weights (Hull & Irwin, 1978) were
employed to mitigate such ill conditioning. In 2000
random-phase sets, no solutions were produced that
had a stable negative NQEST value. Table 3 lists the
top 98 ¥, triples for this structure that have A values
greater than 2.5. In addition to the 10 aberrant triples
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Table 2. Partial listing of Y, triples for ACE (P3,, N=92 atoms)

Most of the pairs of triples in the partial listing shown below are either consistent or inconsistent, depending on the value of T. The
strongest two triples in the entire P3, data set are marked %; however, it is physically impossible for them both to be correct. The value
of the first invariant exactly equals that of the second in the list minus 120°. Note that the particular pairs of triples marked § are not
symmetry related and their values are totally independent of one another. The calculation used 212 E values with £;=1.75, 300 with
1,=0.25 and v(random)=0.061.

H -K K-H N1 N2 N3 v* Vo A T() cos ¢
1 3 2 -3 -13 1 2 10 -3 1 11 10 0.037 0.032 3.31 120 0.84%
1 3 2 2 -13 -3 -3 10 1 1 11 10 0.030 0.054 3.31 240 —0.88%
2 3 2 -4 -3 2 2 0o -4 3 125 4 0.072 0.039 2.24 0 0.97
2 3 2 2 -3 -4 -4 0 2 3 125 4 0.077 2.24 0.032 0 0.97
2 0 2 2 -1 -2 -4 1 0 4 20 133 0.080 0.042 191 240 0.98§
2 0 2 -2 1 2 0 -1 -4 4 =20 -133 0.087 0.050 1.91 240 0.87§
1 3 2 2 -2 -3 -3 -1 1 1 134 107 0.044 0.057 1.71 120 —-0.49
1 3 2 -3 =2 1 2 -1 -3 1 134 107 0.028 0.055 1.71 240 -0.51
1 -13 2 2 -1 -3 -3 24 1 11 30 173 0.043 0.031 1.58 240 0.89
1 -13 2 -3 -1 1 2 24 -3 11 30 173 0.038 0.056 1.58 120 —0.05
0 -20 6 -3 20 0 3 0 -6 28 48 155 0.054 0.050 1.41 240 0.43%
0 =20 6 3 20 -3 -3 0o -3 28 48 —155 0.055 0.046 141 120 0.748§
1 10 2 2 -1 -3 =3 1 1 10 30 291 0.044 0.040 1.40 0 —0.98
1 10 2 -3 -1 1 2 1 -3 10 30 291 0.043 0.044 1.40 0 —0.98
1 0 1 1 =23 -2 -2 23 1 31 70 158 0.61 0.051 1.29 120 0.01
1 0 1 -2 =23 1 1 23 -2 31 70 158 0.098 0.043 1.29 240 0.86
0 -1 2 1 1 -1 -1 0o -1 20 356 -31 0.100 0.044 1.28 240 0.98§
[ | 2 -1 1 0 1 0o -2 20 356 31 0.103 0.040 1.28 120 0.97§

Table 3. List of Y, triples for structure ENKA (P1, N=96 atoms)

Asterfsks (*) mark ten aberrant triples (cos #=0.5) for which v~ exceeds v* by more than 0.01 units. A { in the rightmost column
identifies triples for which v* exceeds »~ by 0.03 and may confidently be accepted as reliable. There were 434 E values with 1,=1.65,
600 E values with £,=<0.36 and v (random)=0.071.

H -K K-H N1 N2 N3 vt Vo A cos ¢
11 2 0 -1 2 -2 -10 -4 2 2 —24 -28 0.039 0.049 3.77 0.65
9 6 -1 -12 1 -1 3 -17 2 1 -36 47 0.053 0.033 3.68 0.89
0 16 -3 10 -12 3 -10 -4 0 10 11 -53 0.97 0.008 3.60 0.99%
0 16 -3 -7 ~2 6 7 -14 -3 10 -12 41 0.032 0.043 3.52 0.91
1 1 -2 -11 -6 4 10 5 =2 5 =25 48 0.069 0.023 3.43 1.001
11 2 0 1 -17 2 -12 15 =2 2 33 =57 0.077 0.058 341 0.65
9 -9 4 -10 12 -3 1 -3 -1 7 -1 100 0.009 0.051 3.33 0.66
4 ~-11 -5 1 2 -1 -5 9 6 8 9 -142 0.064 0.063 3.27 0.81
1 1 -2 -12 9 -1 11 -10 3 5 =22 69 0.044 0.060 3.26 0.46*
8 4 -5 -2 =16 0 -6 12 5 4 ~23 =70 0.105 0.057 3.25 0.961
9 6 -1 -1 2 -1 -8 -8 3 1 —24 —164 0.056 0.039 3.19 0.96
4 ~-11 =5 -1 2 1 -3 13 4 8 -9 -176 0.060 0.047 3.19 1.001
8 4 -5 -12 9 -1 4 -13 6 4 =22 80 0.074 0.039 3.19 0.96F
1 1 -2 1 -14 -1 -2 13 3 5 31 -64 0.045 0.077 3.17 0.97
11 2 0 0 -16 3 -1 14 -3 2 -10 —281 0.049 0.067 312 0.02*
1 1 -2 3 9 4 -4 -10 -2 5 38 —63 0.036 0.033 312 1.00
4 -11 -5 -7 4 0 3 7 5 8 -40 55 0.044 0.069 3.12 0.84
4 -1 7 1 2 -1 -5 -1 -6 3 9 —269 0.065 0.053 3.09 0.85
8 0 5 1 2 -1 -9 -2 -4 6 9 -229 0.050 0.081 3.08 0.87
8 4 =5 =5 -5 6 -3 1 -1 4 -16 -124 0.089 0.093 3.08 0.83
8 4 -5 -7 -2 6 -1 -2 -1 4 -12 ~150 0.083 0.048 3.07 0.78%
9 6 -1 -1 -1 2 -8 -5 -1 1 -5 —523 0.035 0.033 3.07 0.99
8 0 5 -1 -2 1 =7 2 -6 6 -9 —246 0.092 0.071 3.06 0.69
8 -6 -6 -12 9 -1 4 -3 7 18 -22 43 0.079 0.066 3.06 0.38
8 4 =5 -1 -2 1 -7 -2 4 4 -9 =275 0.137 0.035 3.04 1.001
9 -1 4 -12 17 -1 3 -6 -3 15 =17 59 0.018 0.031 3.03 0.90
4 -11 -5 2 16 0 -6 -5 5 8 23 -92 0.079 0.050 3.03 0.87
11 2 0 -1 1 =2 -10 -3 2 2 —58 -84 0.065 0.051 3.00 0.99
8 4 -5 -4 11 5 -4  -15 0 4 -8 -321 0.082 0.068 3.00 0.82
4 -1 7 4 -11 -5 -8 12 -2 3 8 —340 0.066 0.038 2.99 0.36
9 6 -1 -9 1 -4 0 -17 5 1 -15 —361 0.032 0.032 295 097
9 -9 4 -13 6 3 4 3 -7 7 =27 105 0.054 0.066 2.94 0.12*
1 ) -1 14 1 0 -15 1 5 -31 -126 0.076 0.035 291 1.001
4 -11 -5 -7 -2 6 3 13 -1 8 -12 183 0.033 0.068 291 0.85
1 2 -1 -12 8 -2 11 -10 3 9 -50 69 0.000 0.072 291 0.77
9 -1 4 -6 18 1 -3 -7 -5 15 -30 ~-55 0.031 0.025 291 0.94
1 2 -1 1 -2 2 -2 0 -1 9 24 -122 0.036 0.058 2.90 0.94
9 6 -1 -8 -6 -1 -1 0 2 1 -39 -219 0.071 0.051 290 0.98
9 6 -1 -10 -3 2 1 -3 -1 1 -84 100 0.044 0.065 2.88 0.19*
9 6 -1 -1 -9 6 -8 3 =5 1 =79 ~-110 0.092 0.061 2.88 1.00%
4 -1 7 0 -3 -6 -4 4 -1 3 —62 -74 0.035 0.029 2.87 0.37
10 -12 3 -7 14 3 -3 -2 -6 11 —41 -7 0.079 0.045 2.86 0.78%
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Table 3 (cont.)

H —-K K-H N1

1 2 -1 -6 14 -3 5 -16 4 9
1 1 -2 -3 17 -2 2 -18 4 5
7 2 -6 -11 1 0 4 -3 6 12
1 2 -1 10 -15 2 -1 13 -1 9
1 2 -1 4 -3 7 -5 1 -6 9
4 -1 7 -1 =2 1 -3 3 -8 3
0 16 -3 10 -13 1 -0 -3 2 10
8 4 -5 -9 -5 4 1 11 4
1 2 -1 -2 -16 0 1 14 1 9
10 -12 3 0 16 -1 -10 -4 -2 11
11 2 0 -10 -2 =2 -1 0o 2 2
9 5 —4 -10 -4 2 1 -1 2 26
9 -9 4 -1 =2 1 -8 1 - 7
0 16 -1 -2 -16 0 2 0 1 13
9 6 -1 1 -4 -1 -10 8 2 1
1 2 0 -1 13 -1 0 -15 1 2
1 2 -1 -10 15 -2 9 -17 3 9
8 4 -5 -1 2 =2 -7 -6 7 4
8 0 5 -8 -6 -1 0 6 -4 6
7 2 -6 -10 -4 0 3 2 6 12
9 6 -1 -3 -4 2 -6 8 -1 1
1 2 -1 -1 301 10 -5 0 9
9 6 -1 -9 -5 4 0o -1 -3 1
9 6 -1 -12 6 0 3 -12 1 1
1 =2 2 9 5 —4 -10 -3 2 24
8 4 -5 -4 -10 -2 -4 6 7 4
1 2 -1 -10 -2 =2 9 0o 3 9
1 -2 2 -7 14 3 6 -12 -5 24
6 -—-18 -1 -7 19 -1 1 -1 2 30
8 4 -5 0 -16 1 -8 12 4 4
9 -9 4 -2 8 0 -7 1 -4 7
9 6 -1 -9 -7 3 0 1 -2 1
11 2 0 -9 -7 3 -2 5 -3 2
0 16 -3 1 -14 -1 -1 -2 4 10
9 6 -1 -3 -2 -6 -6 -4 7 1
1 =2 2 3 -6 -3 -14 8 1 24
1 2 0 -4 3 -6 -7 -5 6 2
5 5 -6 8 -14 3 -13 9 3 16
4 -1 7 -3 3 -6 -1 -2 - 3
12 -17 1 -10 -4 2 -2 21 -3 17
1 2 -1 -3 15 -4 2 -17 S 9
9 -9 4 3 -6 -3 -12 15 -1 7
1 1 -2 -10 -4 2 9 30 5
0 16 -1 1 ) -1 -14 - 13
8 4 -5 3 -15 4 -11 1m 1 4
9 6 -1 1 -1 3 -10 1 -2 1
8 0 5 -3 -1 -5 -5 70 6
1 -14 -2 5 7 1 9 -6 31
0 16 -1 30 -17 2 -3 1 -1 13
6 -—18 -1 -2 5 7 -4 13 -6 30
1 2 -1 6 -12 -5 -7 10 6 9
4 -11 =5 -4 4 -1 0 7 6 8
3 -15 4 0 -3 -6 -3 18 2 14
8 4 -5 -3 -13 -1 -5 9 6 4
11 2 0 -1 1 0 0 -3 0 2
1 1 -2 -1 12 0 -2 0 5

(*) that are correctly identified, "< »~ and cos & =<
0.5, 23 strong positive cosine indications are noted
(1) for which »™ exceeds v~ by 0.03 units. A basis
set of 29 reflections was extracted from these 23 triples
that could be expressed in terms of three origin
definers (phases 5, 8 and 9), 12 magic-integer symbols
selecting the enantiomorph (phases 1, 2, 4, 10, 11, 12,
13, 21, 22, 23, 25 and 31) and 14 symbolic relation-
ships defining 14 other phases. Standard tangent-
formula refinement of 8190 phase sets [ N =2 magic-
integer scheme (Main, 1977)] produced four solutions
with a stable negative NQEST value of —0.20 from
which more than 90 atoms of the structure were

N2 N3 v* Vo A cos @
=21 146 0.100 0.046 2.86 0.991
—-47 113 0.062 0.040 2.83 0.96
-37 60 0.031 0.041 2.83 0.72
51 —86 0.072 0.028 2.82 0.95t
43 -101 0.114 0.058 2.80 0.98%
-9 —469 0.046 0.041 2.78 0.90
49 -84 0.032 0.063 2.78 -0.71*
-26 191 0.067 0.060 2.77 0.99
=23 189 0.078 0.064 2.76 0.86
13 -221 0.083 0.045 2.74 0.907F
-45 -219 0.054 0.070 2.72 -0.03*
-28 58 0.031 0.024 2.7 0.78
-9 —467 0.028 0.062 2.70 0.99
=23 122 0.073 0.053 2.69 0.70
31 —403 0.063 0.029 2.69 0.84%
—-86 -126 0.082 0.039 2.68 0.98%
-51 127 0.042 0.051 2,67 0.58
-24 -267 0.046 0.082 2.67 0.17*
-39 179 0.029 0.049 2.66 0.81
=53 s\ 0.013 0.019 2.66 1.00
-118 -143 0.023 0.049 2.65 0.99
—65 93 0.030 0.040 2.65 0.70
-26 —442 0.061 0.035 0.265 0.99
-54 323 0.024 0.053 2.64 1.00
26 —84 0.075 0.012 2.62 0.961
-63 -129 0.052 0.073 2.62 0.96
—-45 170 0.079 0.039 2.61 0.92%
—41 70 0.042 0.011 2.60 1.00
—46 58 0.061 0.018 2.59 0.901
-13 —-427 0.133 0.068 258 0981
-32 ~254 0.012 0.038 2.58 0.88
-106 193 0.040 0.060 2.57 -0.10*
-106 -137 0.013 0.032 2.57 0.93
31 -209 0.036 0.018 2.57 0.94
=71 =277 0.056 0.063 2.57 0.92
27 -95 0.012 0.037 2.56 0.07*
—-60 -232 0.058 0.027 2.56 0.98+
44 -89 0.148 0.056 2.55 0.96%
=73 -150 0.041 0.075 2.55 1.00
-28 -120 0.000 0.045 2.55 0.63
-14 393 0.060 0.030 2.55 0.74%
59 -172 0.018 0.031 2.54 0.99
-28 314 0.048 0.034 2.54 1.00
24 —-189 0.083 0.062 2.53 1.00
14 —446 0.064 0.044 2.53 1.00
154 -157 0.036 0.035 2.52 0.74
-55 -207 0.064 0.057 2.52 093
-34 79 0.063 0.067 2.52 0.93
47 —-124 0.040 0.064 2.51 0.12*
-34 -80 0.018 0.059 2.51 0.92
70 —-141 0.066 0.070 2.50 0.97
-74 130 0.024 0.053 2.50 0.84
—62 -78 0.020 0.044 2.50 0.99
—83 —-142 0.058 0.056 2.50 0.98
-37 —-416 0.049 0.045 2.50 0.88
=77 160 0.038 0.038 2.50 0.88

discernible. Six other partial solutions were also
obtained for which NQEST was stable in the vicinity
of ~—0.05 and from which significant chemically
recognizable segments of the structure could be iden-
tified for fragment recycling. None of the earlier trials
produced any solutions that were as readily interpret-
able as the worst of this latter group.

The fourth structure, HEXIL, is included as an
embarrassing example of shaken confidence in the
active use of phase-invariant information. At least a
dozen or more attempts were made to solve this
structure with the methods described above; a number
of trials used basis sets of up to 45 reflections and
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(a) The top 25}, triples. Of 15 aberrant (*) triples indicated, 12 have v*=<»", only 3 are incorrectly indicated (). 430 E values with

1, =1.75, 600 with 1,=0.35, v(random)=0.067.

CUVHFONNAERLRPLNE,WOON=ORhONANWKVEDSN

T

—
—ONPAPARAO—=O= =N bAoA NNON_,OODOO

—

PN WOON—=ORhOABRNUVES

11
LR

-7

|
]

|

I
| -
—ONPRARO=O= =~ N=~hRhOoOLNNONLAOOOOD

|
—_

-8
0
-10
-4
-8
0

0
-8
0
-2

K-H

ocohbooOOO

| I 11
COOHLONKEDO RN

| | |
oOphXOON

0

-4
-18
-8
42
-8
-2
-28
-4
-22
0
-24
0

0
-36
—42
-8
-32
—40
-10
—40
—42
0
-22
-28
-18

N1

54
9
119
7
74
88
48
364
131
53
91
136
142
313
121
464
196
276
375
290
324
188
264
182
172

N2

54
-9
119
71
~74
-88
—48
-364
131
-53
-91
136
142
-313
-121
—464
-196
276
-375
-290
324
188
~264
-182
-172

N3
-4
-532
-7
~67
-177
-142
-387
~4
~142
-616
~369
-301
~301
-39
~580
-7
~186
~86
~31
-86
-67
-301
-142
-387
-532

0.030
0.040
0.023
0.016
0.022
0.007
0.036
0.033
0.046
0.041
0.028
0.073
0.046
0.040
0.045
0.000
0.60

0.005
0.051
0.011
0.027
0.033
0.035
0.053
0.000

0.066
0.047
0.026
0.036

A

0.886
0.754
0.633
0.544
0.460
0.451
0.435
0.388
0.383
0.374
0.365
0.325
0.321
0.302
0.298
0.296
0.291
0.291
0.283
0.279
0.277
0.274
0.273
0.265
0.255

0*

(b) The top 77 zonal restricted ¥, triples. Of 15 aberrant (*) triples in this list, all are flagged with »* less than »~. The reflection with

an incorrect phase is indicated by i (see text).
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Table 4(b) (cont.)

H -K K-H N1
4 0 9 -9 0 -4 5 0 =5 9
10 0 8 -7 0 34 -3 0 -4 7
10 0 8 -2 0 -21 -8 0 13 7
4 0 9 -4 0 19 0 0 -28 9
4 0 19 5 0 -34 -9 0 15 10
4 0 9 4 0 -19 -8 0 10 9
4 0 13 -4 -5 0 0 5 -13 5
4 0 9 1 0 -47 -5 0 38 9
4 0 13 -5 0 -1 1 0 -2 5
3 0 25 1 0 -47 -4 0 22 14
2 0 45 -2 0 =21 0 0 -24 2
1 0 27 -9 0 -14 8 0 -13 12
2 0 45 -5 0 -17 3 0 -28 2
1 0 27 -10 0 -5 9 0 -22 12
5 2 0 -5 0 -1 0 -2 11 29
4 0 9 -5 0 -1 1 0 2 9
1 0 47 7 0 -34 -8 0 -13 20
3 0 25 -10 0 -5 7 0 -20 14
8 0 4 2 0 -21 =10 0 17 4
3 0 25 2 0 -21 -5 0 -4 14
4 0 9 -9 0 -14 5 0 5 9
2 0 45 3 0 =50 -5 0 5 2
1 0 47 -4 0 2 3 0 -4 20
4 0 19 -9 0 -15 5 0 -4 10
10 0 5 -3 0 -17 -7 0 12 23
4 0 19 -1 0 -47 -3 0 28 10
8 0 4 -5 0 -34 -3 0 30 4
4 0 9 2 0 21 -6 0 -30 9
2 0 45 -8 0 -32 6 0 -13 2
10 0 5 -3 0 17 -7 o -22 23
4 0 19 -9 0 -14 5 0 -5 10
3 0 25 6 0 -36 -9 0 11 14
9 0 2 -4 0 2 -5 0 -4 26
8 0 4 -3 0 -4 -5 0 38 4
0 2 10 0 -2 =50 0 0 40 31

required the examination of as many as 64 000 phase
combinations. The structure was eventually solved in
a random-phasing trial with a basis set of 18 substan-
tialized phases (Woolfson, 1954). Of the 2560 phase
sets examined, the one with the best figures of merit
(NQEST = -0.097, R=0.257) produced an E map
from which a peptide-like fragment of ten atoms
could be discerned. Fragment recycling produced five
solutions in ten random-phasing trials (Yao, 1983);
a total of 100 atoms were located in the next E map.
Of the ten atoms selected from the original peptide
test fragment, nine corresponded to real atomic posi-
tions and one was chosen in error. A re-examination
of the previous cosine-invariant-analysis-based trials
revealed that one trial had 36 of 37 zonal basis-set
phases correct for one of the 256 permutation combi-
nations allowed by the eight symbols involved. The
lone phase error affected reflection no. 411, which
was imprudently phased through the 49th triple indi-
cated by % in Table 4(b). When all 37 phases were
‘tested with their correct values, the tangent-formula
refinement still failed to produce a solution! An
inspection of the basis-set reflection indices revealed
that only five phases had non-zero k values, so the
six largest unrestricted E values were added to the
basis set to increase the number of phases from 5 to
11. A tangent-formula calculation was performed for
the 252 magic-integer permutations for these 6 addi-

N2 N3 vt vo A T
=22 -220 0.048 0.063 1.763 0
=51 -113 0.028 0.060 1.763 T
-7 89 0.014 0.038 1.753 T
-10 ~387 0.033 0.050 1.714 0*
46 107 0.033 0.058 1.695 w*
10 409 0.051 0.051 1.695 0
-16 411 0.047 0.052 1.670 0*%
20 322 0.045 0.066 1.665 0
=30 =323 0.082 0.062 1.662 T
20 211 0.024 0.052 1.650 T
-7 -369 0.024 0.036 1.649 0
—48 -89 0.045 0.066 1.648 T
—64 —431 0.058 0.027 1.614 T
-23 —239 0.031 0.042 1.595 T
=30 —131 0.053 0.059 1.588 a*
-30 323 0.067 0.067 1.586 0
51 -89 0.071 0.069 1.577 T
-23 =290 0.006 0.027 1.539 ¥
71 339 0.039 0.037 1.532 T
71 -119 0.027 0.021 1.528 0
—48 220 0.033 0.056 1.527 o*
201 220 0.031 0.052 1.523 T
-54 -114 0.056 0.081 1.511 0
~-107 -119 0.038 0.049 1.497 T
=175 91 0.009 0.031 1.488 T
-20 431 0.053 0.045 1.484 T
—46 475 0.025 0.067 1.483 T
71 -207 0.027 0.042 1.482 0
—186 —289 0.026 0.056 1.476 ¥
=175 —95 0.009 0.026 1.475 T
—48 —220 0.032 0.053 1.463 0
39 235 0.039 0.046 1.449 o*
—54 -119 0.020 0.075 1.449 o*
-113 322 0.021 0.044 1.447 a*
=72 86 0.065 0.033 1.444 0

tional phases while the 37 zonal phases were held
fixed at their known values. Still no solution was
obtained. When the 37 zonal phases were introduced
as a known basis set into the random-phasing process,
a solution appeared on average once in only every
100 random trials. Thus, if the ten-atom fragment had
not been recognized, it might have been necessary to
sort through 256 x 100 random phase sets to obtain a
clear-cut solution by these methods.

The last example, GRAMA, rebuilds our
confidence in these methods. Table 5 lists 100 ¥, and
2., triples analyzed for this structure. Of the 19y,
triples, 7 are aberrant (*) and correctly flagged with
v"=v" and, of the remaining 81 Y., triples, 14 are
aberrant and only the two marked (}) have been
incorrectly flagged. The first of these, @,+ ©g— @4,
is a marginal positive indication (v"=0.053, v =
0.052) that was not trusted in the original analysis of
this structure. The second of these, @,+ ¢©16— ®oos,
only affected the 998th phase, which did not have a
strong influence on the direction of the phasing. Table
6 summarizes a group of 33 zonal reflections that can
be expressed in terms of four origin and enan-
tiomorph definers, four Y, phases, five symbols (a,
b, ¢, d, a/2) and eight symbolic relationships. Of this
group of phases, only g9 Was later determined to
be in error. A tangent-formula refinement based
on these 33 zonal and 9 other unrestricted phases
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Table 5. List of triples for the structure GRAMA (P2,2,2,, N =317 atoms)

(a) X, triples. Aberrant triples (*) are indicated at the far right of the table. Incorrectly indicated triples are marked t. The calculation
used 1102 E values with £,=1.75, 1500 with #,<0.32 and v(random)=0.051.

H -K K-H N1 N2 N3 vt vo A T
0 27 2 0 =27 2 0 0 -4 1 -1 —348 0.066 0.039 1.96 T
2 0 1 -2 0 1 0 0 -2 3 -3 -9 0.096 0.063 1.91 0
16 0 1 -16 0 1 0 0 -2 4 -4 -9 0.054 0.047 1.83 [}
2 27 3 2 -27 3 -4 0 -6 8 -8 -2 0.032 0.043 1.69 [}
3 6 2 3 -6 2 -6 0 -4 5 -5 -19 0.033 0.038 1.41 0*
0 33 1 0 -33 1 0 0 -2 12 -12 -9 0.059 0.033 1.18 0
0 25 1 1] -25 1 0 0 -2 15 —15 -9 0.057 0.055 1.14 0
8 0 1 -8 0 1 0 0 -2 36 -36 -9 0.054 0.040 0.77 0
17 0 1 -17 0 1 0 0 -2 39 -39 -9 0.024 0.042 0.76 T*
0 0 2 0 0 2 0 0 -4 9 -9 —348 0.056 0.078 0.74 0*
2 0 5 -2 0 5 0 0 -10 16 -16 —-122 0.052 0.042 0.72 0
2 35 3 2 -35 3 -4 0 -6 77 =77 -2 0.067 0.031 0.69 0
0o 35 2 0 -35 2 0 0 -4 11 -11 —348 0.036 0.038 0.69 T
2 14 3 2 —~14 3 -4 0 -6 108 -108 -2 0.014 0.034 0.61 T*
0 8 2 0 -8 2 0 0 -4 21 =21 —348 0.033 0.049 0.57 0*
0 8 2 0 8 -2 0 -16 0 21 =21 -350 0.033 0.038 0.57 0
15 0 2 -15 0 2 0 0 -4 24 -24 ~348 0.033 0.048 0.56 T
3 14 2 3 -4 2 -6 [ — 62 -62 -19  0.020 0.033 0.55 0*
5 0 5 -5 0 5 0 0 -10 34 -34 -122 0031 0.040 0.52 *
(b) Zonal restricted ¥, triples
H -K K-H N1 N2 N3 vt v” A T
4 0 6 -2 [} -1 -2 0 -5 2 -3 -16 0.062 0.047 3.78 0
0o 27 2 0 0 2 0 =27 -4 1 9 -35 0.055 0.047 3.53 0
0 27 2 0 8 2 0 -35 -4 1 21 -40 0.063 0.031 3.05 0
4 0 6 16 0 -1 -20 0 -5 2 4 ~72 0.036 0.038 2.79 0
0 27 2 0 -35 -2 0 8 0 1 -11 161 0.055 0.028 2.70 0
2 0 1 16 0 -1 -18 0 0 3 4 —88 0.028 0.040 2.69 [}
4 0 6 -2 0 1 -2 0 -7 2 -3 -178 0.056 0.044 2.51 0
2 0 1 -6 0 -4 4 0 3 3 -19 32 0.035 0.052 2.47 0
2 0 1 15 0 -2 -17 0 1 3 24 39 0.038 0.042 2.32 T
0 33 1 0 -25 1 0 -8 -2 12 -15 =21 0.030 0.037 2.24 0
0o 27 2 0 -26 13 0 -1 -15 1 -27 -366 0.035 0.041 2.19 T
0 27 2 0 -13 -6 0 -14 4 1 ~48 -124 0.029 0.031 2,18 0
0 0 2 0 35 2 0 =35 -4 9 11 —-40 0.043 0.042 2.09 0
16 0 1 0 =25 -1 -16 25 0 4 -15 93 0.029 0.041 2.08 T
2 0 1 0 -33 -1 -2 33 0 3 -12 135 0.049 0.026 2.06 T
0 27 2 0 -33 -1 0 6 -1 1 -12 1045 0.048 0.038 2.03 T
0 27 2 0 =25 -1 0 -2 -1 1 -15 —1028 0.035 0.032 2.01 0
4 0 6 -6 0 —4 2 0 -2 2 -19 -110 0.036 0.050 2.00 0
2 0 1 0 -25 -1 -2 25 0 3 -15 159 0.043 0.042 1.97 T
0 35 2 0 -8 2 0 -27 -4 11 -21 =35 0.041 0.034 191 0
18 0 12 ~15 0 2 -3 0 -14 7 -24 -52 0.030 0.037 191 T
2 0 1 4 0 -3 -6 0 2 3 32 84 0.035 0.045 1.90 0
4 0 6 0 0 2 -4 0 -8 2 9 —~442 0.053 0.052 1.85 0*t
2 0 5 6 0 -4 -8 0 -1 16 19 -36 0.037 0.038 1.85 0*
0 27 2 0 -26 -13 0 -1 11 1 =27 —1055 0.065 0.035 1.84 0
0 27 2 0 =27 4 0 0 -6 1 -35 —620 0.051 0.027 1.83 T
3 6 0 -1 27 0 -2 -33 0 6 14 —-135 0.037 0.029 1.83 T
2 0 1 -8 0 1 6 0 -2 3 -36 -84 0.054 0.040 1.83 0
2 0 1 -4 0 -3 2 0 2 3 -32 110 0.043 0.054 1.81 0*
2 0 1 15 0 2 -17 0 -3 3 24 =210 0.035 0.046 1.81 0
2 0 1 -2 0 -5 0 0 4 3 -16 348 0.067 0.052 1.78 0
2 0 1 -5 0 9 3 0 -10 3 =31 -139 0.038 0.037 1.77 0
4 0 6 -5 0 9 1 0 15 2 -31 -149 0.044 0.045 1.76 T
0 0 2 -6 0 -4 6 0 2 9 -19 84 0.038 0.047 1.73 0
0 5 4 0 8 2 0 -13 -6 17 21 —48 0.017 0.032 1.73 0*
1 27 0 5 6 0 -6 -33 0 14 22 —54 0.038 0.036 1.71 0
16 0 1 -5 [} 9 -11 0 -10 4 -31 -170 0.035 0.37 1.69 T
18 0 12 ~15 0 -2 -3 [} -10 7 -24 -139 0.035 0.018 1.64 0
0o 27 2 0 0 -10 0 =27 8 1 -122 -379 0.046 0.039 1.63 T
2 0 1 -2 0 5 0 0 -6 3 -16 -620 0.073 0.040 1.63 0
0 0 2 2 0 5 -2 0 -7 9 16 -178 0.056 0.044 1.62 0
2 0 S -5 0 9 3 0 -14 16 -31 ~-52 0.054 0.026 1.60 0
2 0 1 -2 0 9 0 0 -10 3 -56 -122 0.062 0.042 1.59 0
2 0 1 -3 0 14 1 0 -15 3 -52 -149 0.030 0.040 1.58 T
0 27 2 0 -13 -5 0 -14 3 1 —68 —~805 0.028 0.032 1.58 T
0 33 1 0 =25 -1 0 -8 0 12 —-15 —-161 0.045 0.036 1.57 0
0 0 2 0 -8 -2 0 8 0 9 -21 161 0.038 0.042 1.55 0
0 27 2 0 =27 -6 0 0 4 1 -216 348 0.048 0.040 1.54 0
2 0 1 3 0 14 -5 0 -15 3 52 ~-191 0.040 0.058 1.54 0
4 0 6 2 0 5 -6 0 -11 2 16 —-998 0.048 0.038 1.51 0*+
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Table 5(b) (cont.)

H -K K-H N1
4 0 6 -6 0 -8 2 0 2 2
16 0 1 2 0 -5 -18 0 4 4
2 0 5 4 0 -3 -6 0 -2 16
0 0 2 0 13 6 0o -13 -8 9
4 0 6 =15 0 -2 11 0 -4 2
0 27 2 0 -26 -17 0 -1 15 1
2 0 1 =7 0 -2 5 0 1 3
16 0 1 2 0 -9 -18 0 8 4
2 0 5 4 0 3 -6 0 -8 16
16 0 1 -6 0 4 -10 0 -5 4
18 0 12 -7 0 -2 -11 0 -10 7
6 0 4 -15 0 2 9 0 -6 19
2 0 5 -4 0 -3 2 0 -2 16
2 0 5 15 0 -2 -17 0 -3 16
4 0 6 6 0 4 -10 0 -10 2
0 0 2 0 27 4 0 -27 -6 9
2 0 1 2 0 -9 -4 0 8 3
0 0 2 17 0 1 -17 0 -3 9
2 0 5 -5 0 5 3 0 -10 16
18 0 12 2 0 5 =20 0o -17 7
0 27 2 0 =27 -8 0 0 6 1
16 0 1 -2 0 9 -14 0 -10 4
4 0 6 7 0 -2 -11 0 -4 2
4 0 6 11 0 10 -15 0 -16 2
16 0 1 -5 0 -5 -11 0 4 4
16 0 1 -1 0 15 -15 0 -16 4
6 0 4 -4 0 3 -2 0 -7 19
4 0 6 -3 0 14 -1 0 -20 2
18 0 12 -20 0 -5 2 0 -7 7
0 0 2 -2 0 -9 2 0 7 9
2 0 5 =20 0 -5 18 0 0 16

N2 N3 v* v A T
-95 110 0.028 0.040 1.50 0*
16 920 0.044 0.029 1.49 0
32 -84 0.034 0.042 1.47 o*
48 -83 0.032 0.042 1.46 0
-24 --894 0.023 0.039 1.45 a*
-308 -366 0.051 0.032 1.45 0
-37 448 0.042 0.043 1.45 o*
56 227 0.013 0.034 1.44 0
32 -95 0.040 0.037 1.44 0
-19 -927 0.024 0.030 1.44 0
-37 -170 0.024 0.032 1.42 0
—-24 -136 0.012 0.040 1.42 0
-32 -110 0.054 0.039 1.41 0
24 -210 0.022 0.027 1.40 T
19 —-1262 0.034 0.043 1.39 o*
35 -216 0.042 0.052 1.35 o*
56 442 0.060 0.039 1.34 0
39 =210 0.034 0.037 1.34 0
-34 -139 0.043 0.044 1.33 0
16 -911 0.037 0.031 1.32 0
=379 620 0.049 0.028 1.30 0
-56 —493 0.033 0.041 1.30 0
37 —894 0.022 0.047 1.29 a*
170 —194 0.017 0.026 1.29 0
-34 894 0.027 0.035 1.29 T
—149 —-194 0.037 0.028 1.28 T
-32 -178 0.028 0.036 1.27 0*
-52 =707 0.026 0.039 1.27 T
=72 -178 0.009 0.038 1.27 7*
-56 178 0.044 0.044 1.26 0
-72 88 0.025 0.034 1.25 0

Table 6. Basis set of 33 zonal restricted phases obtained for GRAMA as determined from Table 5

Five symbols (a, b, ¢, d, «/2) and eight symbolic relationships (®;=@;x @y, coded as i=j+k) are employed to express this set. Reflection

no. 998 is in error (*) and has a true phase value of 90°,

Serial Serial
no. ¢ no.
1 w/2 (0,27,2) . 16
3 w2 (2,0,1) Origin 35
6 w2 (3,6,0) and 21
12 /2 (0,33,1) enantiomorph 40
1
) " 161
9 + L 178
122 + phases 135
348 . 1045

produced a phase set (NQEST =—0.093, R =0.419)
and an E map from which numerous small peptide
fragments could be discerned. A 60-atom helical
model was fitted to a number of small fragments, the
phases produced by the model were subjected to ten
separate random-phasing trails and two improved
solutions were obtained from which 109 atoms of the
backbone of the helix could be traced. A total of 334
full and partial occupancy carbon, nitrogen and oxy-
gen positions were eventually determined as the struc-
tural model was refined. It would have been virtually
impossible to achieve this goal by traditional tangent-
formula phasing methods had one not relied on the
v-STAT formulae described in this paper.

The development of the »-STAT formulae and
structural applications described here were supported
by NIH grants GM32812 and GM46733.

Serial Serial
@ no. @ no. ®
-7/2 620 P 216 —-w/2
/2 14 w/2 998 —/2¥
a 379 —-/2 4 a/2
=21+1 84 b 920 =4+16
=21+35 36 =3-84 442 T
=11-1 52 c 27 d
—-7/2 31 =16-52 1055 =1-27
+ 56 /2
= 15 =12-161
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On Direct-Methods Phase Information from Differences Between
Isomorphous Structure Factors
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Abstract

An efficient procedure is presented for the derivation
of joint probability distributions of isomorphous
data sets. The new technique is based on the use of
the differences of isomorphous structure factors as
random variables. It will be shown that the usual
probabilistic techniques, applied to these random
variables, finally result in the joint probability distri-
bution of three single differences of isomorphous
structure factors comprising three doublet and eight
triplet phase sums. An advantage of the new technique
is that the inherent correlation between the isomor-
phous data sets is removed if a probabilistic pro-
cedure is set up for the small difference itself. In this
way, an enormous mathematical simplification is
obtained while the final results are much better
than those obtainable by previous probabilistic
expressions. The final triplet distribution seems to be
of sufficient quality to be used in a normal direct-
methods procedure. In contrast to usual approaches,
the heavy-atom substructure need not be solved first.
The probabilistic expression will be explained in
detail for one and three single differences. Applica-
tions for the cases of single anomalous scattering,
two different wavelengths and single isomorphous
replacement (excluding anomalous-scattering effects)

0108-7673/93/030557-13$06.00

for both real and randomly generated data show the
strength of the method.

Abbreviations
c.f. Characteristic function
j-p-d. Joint probability distribution
c.p.d. Conditional probability distribution
(p.)r.v. (Primitive) random variable
s.f. Structure factor
SD Single difference
DM Direct methods
DR Diffraction ratio
SIR(N)AS Single isomorphous replacement
(neglecting) anomalous scattering
SAS Single-wavelength anomalous
scattering
2DW Two different wavelengths

1. Introduction

The crystal structures of relatively small molecules
with up to 100 independent atoms are readily deter-
mined from diffraction intensities by means of DM
techniques relying on the mathematical application
of a j.p.d. of complex-valued structure factors. DM
estimate phases from the intensities and when these
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